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Abstract
Moment based methods have produced efficient multiscale quantization
algorithms for solving singular perturbation/strong coupling problems. One of
these, the eigenvalue moment method (EMM), developed by Handy and Bessis
(Handy C R and Bessis D 1985 Phys. Rev. Lett. 55 931) and Handy et al
(Handy C R, Bessis D, Sigismondi G and Morley T D 1988b Phys. Rev. Lett.
60 253), generates converging lower and upper bounds to a specific discrete state
energy, once the signature property of the associated wavefunction is known.
This method is particularly effective for multi-dimensional, bosonic ground
state problems, since the corresponding wavefunction must be of uniform
signature, and can be taken to be positive. Despite this, the vast majority of
problems studied have been on unbounded domains. The important problem of
an electron in an infinite quantum lens potential defines a challenging extension
of EMM to systems defined on a compact domain. We investigate this in this
paper, and introduce novel modifications to the conventional EMM formalism
that facilitate its adaptability to the required boundary conditions.

PACS numbers: 03.65.-w, 05.30.-d, 42.50.-p, 42.79.BH, 67.40.Db

1. Introduction

Self-assembled quantum dots (QDs), obtained by interrupted growth in strained
semiconductors, offer an attractive and fascinating array of physical properties (Leonard et al
1993, 1994). Differential capacitance (Drexler et al 1994, Miller et al 1997), magnetic-
conductance (Medeiros-Ribeiro et al 1997), and optical experiments (Fafard et al 1994, Lee
et al 2000) demonstrate that electronic states are strongly confined inside such structures.

Typically, a lens geometry is assumed (Leonard et al 1994), with a circular cross section
of maximum radius a, and maximum thickness b; wherein the charge carriers are confined by
a hard wall (infinite) potential (refer to figure 1). The mathematical characterization of the
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energy levels of such nanostructures is a delicate problem, particularly in the thin lens limit
b
a

→ 0, which corresponds to a singular perturbation regime.
Recently, conformal analysis methods were used to solve the infinite quantum lens

potential (Rodriguez et al 2001). Preliminary results underscore the delicate nature of the
thin lens regime. In order to better assess the accuracy of such methods, we have developed
an eigenenergy bounding procedure that, at low order, yields exceptionally tight bounds to the
discrete state energy levels. The details are presented here, with respect to the lowest energy
state within each azymuthal quantum number subspace.

Our bounding procedure is based on the eigenvalue moment method (EMM) formalism of
Handy et al (1985, 1988a, 1988b). This, linear programming based (Chvatal 1983) formalism
has been shown to be exceptionally well suited for singular perturbation/strong coupling
problems. It is straightforward to use, and involves the application of fundamental theorems
arising from the classic moment problem (Shohat and Tamarkin 1963, Akhiezer 1965), as
well as theorems pertaining to the signature structure of bosonic (ground state) wavefunctions
(Reed and Simon 1978).

The moment problem deals with the necessary and sufficient properties that the moments
of a function must satisfy in order for the function to be non-negative. Additional questions of
uniqueness arise; however, within the context of EMM, the uniqueness of the physical solution,
as implicitly incorporated within the necessary moment relations considered, circumvents these
concerns.

In the following subsections we outline the essentials, first for the multi-dimensional
Re3-EMM formulation, and then for a compact domain, D ⊂ Re3.

In generating the necessary moment equation (ME) for the compact domain case
(i.e. transforming the Schrödinger equation into an equation for the relevant power moments),
boundary terms will appear. These boundary terms will correspond to generalized moments of
reduced dimension due to integrating along the boundary of D. One prefers an ME formulation
devoid of such complicating expressions. An additional novel contribution of this work is the
development of an EMM prescription for eliminating the boundary terms from the relevant
ME representation.

This is not trivial. In the appendix we present several one-dimensional examples
demonstrating the pitfalls that can ensue if things are not done properly. The reader may
wish to consult these examples first. We also include in the appendix a review of EMM, in
one dimension, for the sake of a self-contained presentation.

We close this section by emphasizing that EMM can be characterized as an affine map
invariant variational procedure. We believe that this explains the robustness of the method,
and its suitability for addressing singular perturbation type problems where sensitivity to
multiscale features of a problem are important. In sections 2–4 we discuss the specifics of the
EMM analysis as applied to the infinite quantum lens potential.

1.1. EMM on Re3

The multi-dimensional bosonic ground state wavefunction must be of uniform signature, which
can be taken to be non-negative (Reed and Simon 1978):

�gr(�r) � 0. (1)

It will then satisfy the positive integral relations:∫ ∫ ∫
dx dy dz

(PC(�r)
)2
�gr(�r) > 0 (2)

where PC ≡ ∑
l,m,n Cl,m,nx

lymzn is an arbitrary polynomial. In terms of the power moments,
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µ( �p) ≡
∫ ∫ ∫

dx dy dz xp1yp2zp3 �gr(�r) (3)

for non-negative integer values, �p = (p1, p2, p3), pi � 0, the integrals in equation (2) become
the Hankel–Hadamard (HH), quadratic form, inequalities:∑

l1,m1,n1

∑
l2,m2,n2

Cl1,m1,n1µ(l1 + l2,m1 + m2, n1 + n2)Cl2,m2,n2 > 0 (4)

for arbitrary C’s (not all identically zero).
The Fourier transform of the L2 Schrödinger equation solutions, usually admits a power

series expansion, whose Taylor coefficients (i.e. the moments) satisfy a linear recursion relation.
This is referred to as the moment equation (ME). Although implicitly derived for the physical
solutions, the ME relation can be extended into the energy space domain, and thus exists for
any energy parameter value, E.

The entire set of power moments is divided into two subsets:

{µ( �p)| �p � �0} = {µ(��)|�� ∈ Ms} ∪ {µ( �p)| �p /∈ Ms}. (5)

The first subset corresponds to the initialization moments, or missing moments, which must be
specified before all of the other moments can be generated through the ME relation.

The generated moments, those in the second subset, are linearly dependent on the missing
moments. We can represent the ME relationship as

µ( �p) =
∑
��∈Ms

ME( �p, ��)µ(��) (6)

�p /∈ Ms . We emphasize that the �� index notation exclusively refers to the missing moment
variables.

The ME coefficients are dependent on E, and can be defined so that the above is also valid
for the missing moments as well (i.e. ME(��1, ��2) = δ��1,��2

, for ��1,2 ∈ Ms).
For 1-space dimension systems, the number of missing moments is finite, and denoted

by 1 + ms . For multi-dimensional systems, Red�2, the number of missing moments is
infinite; however, the set of missing moments naturally decomposes into a hierarchy of finite-
dimensional subspaces:

{µ(��)|�� ∈ Ms} = · · · U∞ · · · ⊃ Un ⊃ Un−1 · · · ⊃ U1 (7)

where we implicitly assume that the missing moment variables are sequentially indexed, in
some convenient manner, and Un denotes the missing moment subspace consisting of the first
n missing moments.

Each of the missing moment finite-dimensional subspaces, Un, determines a finite set of
generated moments.

Since the ME is a homogeneous relation, one must impose a normalization condition.
This is normally done with respect to the missing moments. For instance, we can take∑

��∈ Un

µ(��) = 1. (8)

Adopting this, one then substitutes the ME relation (equation (6)) into the HH inequalities
(equation (4)). Since all the moments are linear in the missing moments, a linear programming
problem is defined of the form∑

��
���(E;C)µ(��) > 0 (9)

where the � coefficients are nonlinearly dependent on E, and quadratically dependent on the
(arbitrary) C’s.
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In implementing EMM, we must first define an appropriate enumeration for all of the
non-negative 3-tuple integer vectors, {(l, m, n)|l, m, n � 0}. Assuming this (i.e. (l, m, n)i),
we then have

{(l, m, n)|l, m, n � 0} = T∞ · · · ⊃ Ti ⊃ Ti−1 · · · ⊃ T1 (10)

where Ti denotes the set of 3-tuple integer vectors containing the first i vectors. We do not
have to work with the Ti’s sequentially. We can pick any subsequence of this. Let i → I .

Restrict the PC polynomials to those whose monomial terms have degrees lying within
TI . From equation (4) it becomes clear that the required (‘generated’) moments are {µ( �p)| �p =
(l1,m1, n1)+ (l2,m2, n2), where (l1,2,m1,2, n1,2) ∈ TI }. One must then determine the missing
moment subsets, U (I ) ≡ Un(I), that generate these. They in turn define the linear programming
(HH-inequality) problem symbolized in equation (9).

For a given dimension, I , at an arbitrary energy value, E, the HH linear inequalities will
either have a missing moment solution set, U (I )

E , or not U (I )
E = �. If there is a solution set, it

must be convex. This convex set may be considered as the intersection of an (uncountably)
infinite number of polytopes (convex sets formed from the intersection of a finite number of
hyperplanes).

The objective of the linear programming based, algorithmic implementation of EMM, is
to quickly determine the existence or nonexistence of U (I )

E . At any order I , the feasible energy
values (those for which the convex set exists) define an energy interval, (E(I)

L , E
(I)
U ), within

which the true ground state value, Egr , must lie. As the order is increased, the energy endpoints
define converging lower and upper bounds to Egr :

E
(I)
L � E

(I+1)
L � · · · < Egr < · · · � E

(I+1)
U � E

(I)
U I → ∞. (11)

1.2. EMM on D ⊂ Re3

When EMM is to be implemented on a subset, D, of the full space, one must consider more
moment constraints than those in equations (2) or (4). We want

�(�r) = 0 for �r ∈ D (12)

where D denotes the complement of the set. We need to define moment problem constraints
that insure the conditions in equation (12).

Define the decomposition

D =
J⋃

j=1

%j (13)

where %j

⋂D = �. Assume that there exist polynomials, P%j
(�r), with the properties

P%j
(�r) is

{
� 0 �r ∈ Re3 − %j

< 0 �r ∈ %j .
(14)

Then, for each of these polynomials, we supplement equations (2), (4) by∫ ∫ ∫
D

dx dy dz
(PC(�r)

)2P%j
(�r)�gr(�r) > 0. (15)

We can motivate this as follows. The inequalities in equation (2) only yield that �gr is
non-negative over Re3. Each of the additional inequalities in equation (15) tells us that P%j

�gr

is also non-negative on Re3, if we replace the integration domain D by Re3 in equation (15).
However, �gr and P%j

�gr cannot be non-negative on %j without �gr being zero over %j .
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Thus, if we had replaced D → Re3 in equation (15), we would conclude that equation (12)
holds, thereby justifying the restriction of equation (15) to the D domain, as explicitly noted.

The zeros of any multi-dimensional polynomial do not necessarily correspond to the
boundary of a convex set. Thus, in principle, the domain D can be nonconvex, although the
particular problem being considered here corresponds to a convex domain.

1.3. Removing the boundary terms in the moment equation

In deriving the ME relation for the moments restricted to D, boundary terms are introduced.
We prefer, where possible, to remove these, since they complicate (although not necessarily
prevent) the implementation of EMM. To motivate our approach, we consider the case of a
free particle restricted to a compact domain (i.e. the potential becomes infinite on D):

−∇2�(�r) = E�(�r) (16)

for �r ∈ D, and � = 0, on the boundary.
Consider any function, G(�r), and multiply both sides of the above, followed by the

appropriate ‘integration by parts’ differential operator rearrangements. We obtain

−( �∇(G �∇�) − �∇(� �∇G) + �∇2G
) = E G�. (17)

If G = 0 on the boundary of D (and on which � = 0, also) then upon integrating equation (17)
over D, no surface terms appear:

−
∫ ∫ ∫

D
d3r �∇2G = E

∫ ∫ ∫
D

d3r � G. (18)

We can take G = xlymznPz(�r), where the polynomial Pz(�r) becomes zero on the boundary of
D (the intended connotation of the z subscript). For reasons clarified below, Pz must not have
any zeros within D. Upon varying l, m, n, there ensues a ME for the moments of �.

If we allow Pz to have zeros within D, then the resulting ME does not uniquely correspond
to the physical system of interest, and EMM will fail to generate any bounds.

To clarify this important point, assume that Pz(�rz) = 0, corresponds to a zero within D.
Then the modified equation

−∇2�(�r) = E�(�r) + Aδ(�r − �rz), (19)

for arbitrary A, will also transform into equation (17). Since for each A there may be a
non-negative solution, one cannot expect that application of EMM, to the ME derived from
equation (17), will yield a unique E value. That is, no converging bounds should result.

In the appendix, in addition to the pedagogic review of EMM in 1-dimension
(i.e. appendix A), we also show some of the consequences of incorrectly specifying Pz

(i.e. appendix B).

1.4. EMM: an affine map invariant variational procedure

The EMM formalism has been used to generate rapidly converging bounds to the ground state
binding energy of hydrogenic atoms in superstrong magnetic fields (Handy et al 1988a, b),
otherwise known as the quadratic Zeeman effect. This problem had been notoriously difficult,
yielding varying results depending on the method used. The ability of EMM to define tight
bounds to the ground state binding energy enabled one to discriminate between competing
(energy estimation) methods. In particular, it confirmed the results of LeGuillou and Zinn-
Justin (1983), which were based on order dependent, conformal analysis.

The consistency of the EMM generated results, and those based on LeGuillou and Zinn-
Justin’s conformal analysis, is more than a coincidence. In one dimension, an affine map
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z=R 1
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Figure 1. Quantum lens geometry of height b and circular cross section of radius a.

transformation of the point x is defined by x → x−τ
s

, where s and τ are scale and translation
parameters, respectively. An affine map transform of a given function, P(x) → P( x−τ

s
),

corresponds to a translation and stretching (or contraction).
The variational procedure inherent to EMM, is, in fact, affine map invariant. This is

immediately clear from equation (2), since the variation samples over all polynomial functions;
however, the space of polynomials is invariant under affine transforms. To this extent, EMM
is in keeping with the underlying philosophy of conformal analysis, and should yield either
consistent, or better, results.

This affine map invariance underscores the fundamental complementarity between
moment quantization methods, such as EMM, and explicitly multiscale methods such as
wavelet transform theory (Handy and Murenzi 1998). This further confirms the relevancy
of EMM to singular perturbation type problems which require a careful balancing between
large and small scale contributions.

Despite the numerous types of problems the EMM formalism has been applied to, as
reviewed in the cited references, it has not been used on problems defined on a compact
domain. Such problems require a modification of the basic formalism, in order to adapt
them to the required boundary conditions, as previously discussed. The infinite quantum lens
potential is one such important case, to which we now turn.

2. The infinite quantum lens problem

The quantum lens geometry, as shown in figure 1, is bounded by the z = R1 plane, and the
sphere of radius R2:

Lens domain = {z � R1} ∩ {r � R2} (20)

where R1 < R2.
In a cylindrical coordinate representation, the Schrödinger equation for the infinite

quantum lens potential problem becomes (in energy units E0 = h̄2

2ma2 , and length in units

of the radius, a =
√
R2

2 − R2
1):

−
(

1

ρ
∂ρ(ρ∂ρ�) +

1

ρ2
∂2
φ� + ∂2

z �

)
= E�(ρ, φ, z) (21)

where (r2 = ρ2 + z2, note that we will be working with the r2 and z2 coordinates)
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R2
1 � r2 � R2

2 and R2
1 � z2 � r2 (22)

for z > 0. The boundary condition on the wavefunction is

�(ρ, φ, z) =
{

0 z2 = R2
1

0 r2 = R2
2 .

(23)

The radii R1 and R2 can be redefined in terms of the quantum lens parameters a and b, where

a2 = R2
2 − R2

1 and b = R2 − R1 (24)

or, alternatively,

R2 = a2 + b2

2b
and R1 = a2 − b2

2b
. (25)

The lens domain transforms into a triangular domain in the {r2, z2} coordinate space, or,
equivalently,

ω ≡ R2
2 − r2 and ν = z2 − R2

1 . (26)

The corresponding domain is

0 � ω � a2 and 0 � ν � a2 − ω. (27)

Equation (21) is axially symmetric, and the solutions assume the form �(ρ, φ, z) =
e−imφψ(ρ, z).

In the {ω, ν} coordinate system, the Schrödinger equation becomes (i.e. first transforms
into {ρ2, z2} coordinates, then into {r2, z2}, and finally into {ω, ν}):
−4
(
(R2

2 − ω)∂2
ω − 3

2∂ω − 2(R2
1 + ν)∂ω∂ν + 1

2∂ν + (R2
1 + ν)∂2

ν

)
ψ(ω, ν)

+
m2

a2 − ω − ν
ψ(ω, ν) = Eψ(ω, ν). (28)

The boundaries r2 = R2
2 and z2 = R2

1 become ω = 0 and ν = 0. According to equation (27),
the {ω, ν} physical domain is restricted to the lower left triangle of the [0, a2] × [0, a2] square
region. The hypotenuse of this triangle corresponds to a2−ω−ν = ρ2 = 0. The wavefunction
is not zero along it; although it is zero along ω = 0 and ν = 0.

Although we shall work within the {ω, ν} coordinates, in order to derive the necessary
MEs, we note that we can rewrite the above equation in terms of the coordinates ξ ≡ ω + ν

and η = ω − ν. The derivatives become ∂ω = ∂ξ + ∂η, ∂ν = ∂ξ − ∂η. The ρ = 0 boundary
corresponds to ξ = a2. In terms of these new coordinates, the Schrödinger equation becomes

−4
(
[a2 − ξ ]∂2

ξ + 2[a2 − ξ ]∂ξ ∂η + [R2
2 + 3R2

1 + (ξ − 2η)]∂2
η − ∂ξ − 2∂η

)
ψ

+
m2

a2 − ξ
ψ = Eψ. (29)

We shall refer to the various function coefficients of the derivative operators in equation (29)
(i.e.

∑
i,j Ci,j ∂

i
ξ ∂

j
η ) by

Ci,j (ξ, η) =




a2 − ξ i = 2 j = 0
2[a2 − ξ ] i = 1 j = 1
R2

2 + 3R2
1 + (ξ − 2η) i = 0 j = 2

−1 i = 1 j = 0

−2 i = 0 j = 1.

(30)

Our objective is to derive, for a given quantum numberm, a ME for equation (28), involving
the moments

u(p, q) ≡
∫ a2

0
dω

∫ a2−ω

0
dν ωpνqψ(ω, ν) (31)

and no boundary terms.
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In order to achieve the above, for the m = 0 case, we will have to multiply both sides
of equation (28) by G(ω, ν) = ωpνq , where p, q � 1. We note that G(ω, ν) = 0, along
both boundaries ω = 0 and ν = 0, where ψ = 0. Integrating over the triangular domain in
{ω, ν} does not introduce any boundary terms at all, not even along the ρ = 0 boundary, where
ψ �= 0. We prove this (with respect to the representation in equation (29)), below, for each of
the contributing terms in the ME relation.

(i) The terms G(ω, ν)C0,2(ξ, η)∂
2
ηψ and G(ω, ν)C0,1(ξ, η)∂ηψ , do not introduce any

boundary terms since those generated by integration by parts (in theη direction) correspond
to points where G(ω, ν) = 0 and ψ = 0.

(ii) The integration by parts of G(ω, ν)C1,1(ξ, η)∂ξ ∂ηψ reduces to

∂ξ (GC1,1∂ηψ) − ∂η(ψ∂ξ (GC1,1)) + ψ∂ξ∂η(GC1,1). (32)

The boundary terms produced by the first term (along the ξ direction) are zero since at
one point (corresponding to either ω = 0 or ν = 0) we have G(ω, ν) = 0, while at the
other (corresponding to ξ = a2), we have C1,1 = 0. The boundary terms from the second
term are also zero, since at both ends (along the η direction) we have ψ = 0.

(iii) The integration by parts for G(ω, ν)[C2,0(ξ, η)∂
2
ξ ψ − ∂ξψ] gives us

∂ξ (GC2,0∂ξψ) − ∂ξ (ψ∂ξ (GC2,0)) − ∂ξ (Gψ) + [∂2
ξ (GC2,0) + ∂ξG]ψ. (33)

The first term introduces no boundary terms (along the ξ direction) because at one endpoint
we have G(ω, ν) = 0, while at the other C2,0 = 0. The second and third terms have
no boundary term at the point corresponding to ψ = 0. However, at ξ = a2, since
∂ξC2,0 = −1, we obtain a cancellation between the only surviving boundary terms. This
concludes the proof that no boundary terms arise for the m = 0 case.

For the m �= 0 case, we have that � = 0 for ρ = a2 − ω − ν = 0 (refer to section 4).
Thus, one would think that the choice of G(ω, ν) = ωpνq(a2 − ω − ν), for p, q � 1,
would lead to an acceptable ME. For such a selection, the preceding argument still holds,
although the final cancellation of both boundary terms is unnecessary because of the additional
ρ2 = (a2 − ξ) factor introduced through the modified G. However, a careful review of the
boundary term cancellation analysis presented, shows that nowhere do we explicitly make use
of �(ρ = 0, z) = 0. Thus, the ensuing ME obtained from G(ω, ν) = ωpνq(a2 − ω − ν),
cannot uniquely correspond to the physical system in question. That is, the generated ME would
correspond to equation (21) plus the introduction of additional δ(ρ)-like inhomogeneous terms.

This is an important point that deserves repetition. Thus, not only must G be zero along
the boundary, ∂D, but also ψ must be zero on ∂D, and this must explicitly contribute in the
elimination of the boundary terms.

Thus an alternate formulation is required for the m �= 0 case. Fortunately, a very simple
modification allows us to address this case. This is discussed in section 4.

3. The m = 0 moment equation

The ME for the m = 0 case is

−E

4
u(p, q) = R2

2 p(p − 1) u(p − 2, q) −
[
p2 +

3p

2
+ 2pq

]
u(p − 1, q)

−2R2
1 pq u(p − 1, q − 1) +

[
q2 +

q

2

]
u(p, q − 1) + R2

1q(q − 1) u(p, q − 2)

for p, q � 1. (34)
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The missing moments {u(0, 0), . . . , u(N, 0)} and {u(0, 1), . . . , u(0, N)}, generate all the
moments within the square grid [0, N ]×[0, N ]. We can index the missing moments according
to χ0 ≡ u(0, 0), χ1 ≡ u(1, 0), . . . , χN ≡ u(N, 0), χN+1 ≡ u(0, 1), . . . , χ2N ≡ u(0, N).

We can then determine the energy dependent coefficients linking the moments to the
missing moments

u(p, q) =
ms=2N∑
�=0

ME(p, q, �)χ�. (35)

The ME coefficients satisfy the ME with respect to the p, q indices. In addition,
ME(p�1 , q�1 , �2) = δ�1,�2 , where (p�1 , q�1) denotes the coordinates of the missing moments.

As explained in the previous examples, one can impose a normalization condition of the
form

∑2N
�=0 χ� = 1, constraining χ0. Incorporating this within the above relation we have

u(p, q) = M̂E(p, q, 0) +
ms=2N∑
�=1

M̂E(p, q, �)χ� (36)

where

M̂E(p, q, �) =
{

ME(p, q, 0) � = 0

ME(p, q, �) − ME(p, q, 0) � � 1.
(37)

From the positivity theorems of the moment problem, we have to impose the moment
constraints arising from the integral relations∫ ∫

dω dν %σ (ω, ν)

( ∑
i,j∈[0,I ]2

C̃i,jω
iνj

)2

ψ(ω, ν) > 0 (38)

for arbitrary C̃’s (not all zero), where

%σ(ω, ν) =




1 σ = 0

ω σ = 1

ν σ = 2
a2 − ω − ν σ = 3.

(39)

It is implicitly assumed that ψ is zero outside the triangular domain of interest.
These integral inequalities become linear inequalities, with respect to the u-moments:

∑
i1,j1

∑
i2,j2

C̃i1,j1

(
3∑

n=1

fσ,nu(λ1;σ,n + i1 + i2, λ2;σ,n + j1 + j2)

)
C̃i2,j2 > 0 (40)

where

fσ,n =




1, 0, 0 for σ = 0

0, 1, 0 for σ = 1

0, 0, 1 for σ = 2
a2,−1,−1 for σ = 3

(41)

and the λ’s associated with nonzero fσ,n’s

(λ1;σ,n, λ2;σ,n) =




(0, 0) for σ = 0 n = 1

(1, 0) for σ = 1 n = 2

(0, 1) for σ = 2 n = 3

(0, 0), (1, 0), (0, 1) for σ = 3.

(42)
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Table 1. Ground state energy bounds (m = 0, I = 2).

b
a

Bounds b
a

Bounds

0.80 6 < E < 30 0.20 292.6 < E < 295.5
0.75 26 < E < 33 0.15 496 < E < 506
0.70 33.8 < E < 35.2 0.10 1064 < E < 1093
0.65 38.8 < E < 39.4 0.09 1300 < E < 1340
0.60 44.33 < E < 44.42 0.08 1630 < E < 1680
0.55 50.98 < E < 51.03 0.07 2110 < E < 2180
0.50 59.54 < E < 59.58 0.06 2850 < E < 2950
0.45 70.85 < E < 70.92 0.05 4070 < E < 4210
0.40 86.32 < E < 86.44 0.04 6320 < E < 6520
0.35 108.30 < E < 108.70 0.03 11 160 < E < 11 520
0.30 141.60 < E < 142.20 0.02 24 950 < E < 25 800
0.25 195.60 < E < 196.80 0.01 99 170 < E < 102 970

Table 2. Ground state energy bounds (m = 0, I = 3).

b
a

Bounds b
a

Bounds

0.40 86.37 < E < 86.39 0.10 1077 < E < 1080
0.30 141.90 < E < 141.94 0.05 4120 < E < 4135
0.20 293.92 < E < 294.00

If one defines a coordinate pair sequence (il, jl) ∈ [0, I ] × [0, I ], then the set of points
covered by (il1 , jl1)+(il2 , jl2)+(λ1;σ,n, λ2;σ,n), lie within a square grid [0, N ]2, whereN = 2I+1.
All the moments within this grid will be generated by the missing moments, previously defined.

One proceeds by substituting the moment–missing moment relation in equation (34)
into (40). This defines an infinite set of linear inequalities in the missing moments, and
can be analyzed through the linear programming based EMM algorithm. The EMM numerical
analysis generates a finite number of optimal C̃’s which determine if, to order I , the
(normalized) inequalities in equation (40) have a solution set, U (I )

E , for the specified E value.
The feasible energies define the converging lower and upper bounds.

In tables 1 and 2 we give some results of our approach, as a function of the ratio b
a

, for
the m = 0 case. Note that a = 1 in all the cases considered in this work. Already, for I = 2
(ms = 10), and I = 3 (ms = 14), we obtain very good bounds for the ground state energy,
even for small lens thickness. As the ratio b

a
becomes smaller, the lens becomes thinner, with

maximum thickness b, and base diameter 2a.
In figure 2, we compare the normalized ground state energy ( E

E0
), for m = 0, as a function

of the ratio b
a

, obtained by three methods:

(i) exact numerical solution (solid curve) of equation (28);

(ii) perturbation theory (dashed curves), based on a conformal transformation into a semi-
spherical shape (Rodriguez et al 2001);

(iii) EMM analysis, as reported in table 1 (solid black dots for the lower and upper bounds,
when the ‘bounding’ bars become too small).

It can be seen that very good agreement is obtained between the exact solution and the EMM
bounds, for b

a
< 0.7. The perturbation results yield better agreement with the exact, numerical

solution, for b
a
> 0.8.
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Figure 2. Ground state energy for a quantum lens as a function of the ratio b
a

. The energy is given

in units of E0 = h̄2

2ma2 , as calculated by: exact numerical solution (solid curve); perturbation theory

with respect to the b
a

parameter (dashed curve, Rodriguez et al (2001)); and EMM theory, as given
in table 1 (solid black dots). The lower and upper energy bounds are represented by ‘bounding’
bars (which cannot be depicted for smaller b

a
values).

4. The m �= 0 moment equation

Within each symmetry class, the lowest lying state also corresponds to a non-negative
configuration. Thus it is possible to extend the previous analysis to such states.

We first note that for the excited states, the wavefunction must be zero along the ρ = 0
axis. This readily follows for the m = odd case, since �(x, y, z) = e−imφψ(ρ, z), and �

suffers a discontinuous behavior at the origin (i.e. φ : 0 → π ), with respect to variations in
x, if m �= 0 and ψ(ρ = 0, z) �= 0. To avoid such discontinuities, ψ(ρ = 0, z) = 0. More
generally, one can argue that

ψ(ρ, z) = ρm%m(ρ, z) (43)

where m � 0.
Let us now work, not with %, but instead with

φ(ρ, z) = ρmψ(ρ, z). (44)

Thus, ψ(ρ, z) = ρ−mφ(ρ, z), and upon substituting in the differential equation for ψ :

− 1

ρ
∂ρ(ρ∂ρψ) +

m2

ρ2
ψ − ∂2

z ψ = E ψ (45)

we obtain

−
(

1

ρ
∂ρ(ρ∂ρφ) + ∂2

z φ

)
+

2m

ρ
∂ρφ = Eφ. (46)

Note that φ(ρ = 0, z) = 0. This is an important factor in affirming the validity (i.e. uniqueness
issues) of the ME resulting from equation (46).
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Table 3. Lowest state energy bounds (m = 1).

b
a

Bounds (I = 2) Bounds (I = 3)

0.60 64.1 < E < 64.4 64.222 < E < 64.230
0.50 82.50 < E < 82.67 82.596 < E < 82.599
0.40 113.78 < E < 114.26 114.050 < E < 114.056
0.30 176.15 < E < 177.97 177.15 < E < 177.20
0.20 339.6 < E < 348.6 344.0 < E < 344.4
0.10 1137.0 < E < 1208.5 1170.0 < E < 1175.0

Table 4. Lowest state energy bounds (m = 2).

b
a

Bounds (I = 2) Bounds (I = 3)

0.60 86.7 < E < 87.1 86.890 < E < 86.900
0.50 108.18 < E < 108.67 108.476 < E < 108.480
0.40 143.81 < E < 145.10 144.601 < E < 144.609
0.30 212.70 < E < 217.10 215.29 < E < 215.38
0.20 387.10 < E < 406.1 397.0 < E < 397.8
0.10 1206.0 < E < 1335.0 1263.0 < E < 1278.0

Comparing equations (46) and (21), for the m = 0, case, we see that both are similar,
except for the additional derivative term 2m

ρ
∂ρφ = −4m∂ωφ. In generating the corresponding

ME, no boundary terms are introduced, and the only modification to equation (34) is the
additional ‘−mp’ term appearing in the coefficient of the u(p − 1, q) term:

−E

4
u(p, q) = R2

2 p(p − 1) u(p − 2, q) −
[
mp + p2 +

3p

2
+ 2pq

]
u(p − 1, q)

−2R2
1 pq u(p − 1, q − 1) +

[
q2 +

q

2

]
u(p, q − 1)

+R2
1q(q − 1) u(p, q − 2) (47)

where p, q � 1, and

u(p, q) ≡
∫ ∫

D
dω dν ωpνqφ(ω, ν) (48)

where the domain of integration, D, is the same as that in equation (31).
The results of this analysis are given in tables 3 and 4. They are in keeping with the nature

of the previous results for the m = 0 case.

5. Generalization to excited states

The ME in equation (47) is valid for any state. Within each m (azymuthal) quantum number
symmetry class, the ‘excited’ states will have varying signature. However, if they are bounded,
then one can generate converging bounds for their energy values, provided one can find a
positive constant, c, such that

φc(ω, ν) ≡ c + φ(ω, ν) � 0 (49)

for (ω, ν) ∈ D, as defined previously. One can now replace equation (47) with the moments
u(p, q) = uc(p, q) − cv(p, q), where uc are the moments of the φc configuration, and
v(p, q) = ∫∫

D dω dν ωpνq . Thus, the new ME becomes an inhomogeneous relation. We
can empirically determine appropriate c values by determining the existence of generated
bounds for the energy. If a too large ‘c’ value is used, then the generated bounds converge
more slowly.
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For the states discussed in sections 3 and 4, we know that c = 0.
This approach, referred to as the ‘C-Shift EMM’ approach, has been discussed in earlier

works by Handy and Lee (1991). We do not discuss its implementation here.
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Appendix

As indicated in the introduction, we provide here a pedagogic overview of EMM in the context
of 1-space dimension problems. We do this for two reasons. The first is to make this work self-
contained, thereby facilitating the reader’s understanding of EMM. The second is to contrast
how an improper selection of Pz, as discussed in the introduction, can prevent EMM from
generating converging bounds to the ground state energy. In section A of this appendix, we
review EMM. In section B, we focus on the proper selection of Pz, within the real line, Re . In
section C, we discuss the Haussdorf moment problem corresponding to the one-dimensional
infinite well potential. This serves to complete the discussion with respect to one-dimensional
compact domains, facilitating the understanding of the infinite quantum lens problem, and the
removal of the boundary term relations from the pertinent ME.

Appendix A. The sextic anharmonic oscillator

A. 1. Hamburger moment formulation

Consider the sextic anharmonic oscillator potential problem:

−ε∂2
x�(x) + (mx2 + gx6)�(x) = E�(x) (A.1)

where the kinetic energy perturbation parameter, ε, is explicitly noted, for later reference. The
mass and coupling strength parameters are denoted by m and g, respectively.

The signature structure for the ground (�0) and first excited (�1) states are known a priori:
�i(x) = xiϒi(x), where ϒi(x) > 0. For simplicity, we confine our analysis to the ground
state case.

Define the Hamburger power moments

µ(p) =
∫ +∞

−∞
dx xp�(x) (A.2)

p � 0. Upon multiplying both sides of the Schrödinger equation by xp, and performing the
necessary integration by parts, we obtain the ME

gµ(p + 6) = −mµ(p + 2) + Eµ(p) + εp(p − 1)µ(p − 2) (A.3)

for p � 0. This corresponds to an effective sixth order finite difference equation, in which
specification of the ‘initialization’ moments, or missing moments, {µ(�)|0 � � � 5}, as well
as the energy parameter, E, generates all of the remaining moments.

One important aspect about working within a moments’ representation is that kinetic
energy expansions become regular (i.e. ε expansions). This is not the case in configuration
space, requiring the use of singular perturbation type methods (Bender and Orszag 1978). One
immediate impact of the regularity in ε is that the order of the ME does not change for ε = 0
and 0+ (unlike in configuration space, where the order of the differential equation abruptly
changes from zero to two).
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Let us denote the missing moment order by 1 + ms , where ms = 5. We can express the
linear dependence of the moments on the missing moments through the expression

µ(p) =
ms∑
�=0

ME(p, �)µ(�) (A.4)

where

ME(�1, �2) = δ�1,�2 (A.5)

for 0 � �1, �2 � ms . The ME coefficients are readily obtainable, since they satisfy the ME
relation with respect to the p-index, in addition to the preceding initialization conditions.

We must also impose some, convenient, normalization condition. This can be chosen to
be

ms∑
�=0

µ(�) = 1. (A.6)

Constraining the zeroth order moment, µ(0) = 1 − ∑ms

�=1 µ(�),we redefine the moment–
missing moment relation as

µ(p) =
ms∑
�=0

M̂E(p, �)µ̂(�) (A.7)

where

µ̂(�) =
{

1 for � = 0

µ(�) for 1 � � � ms

(A.8)

and

M̂E(p, �) =
{

ME(p, 0) for � = 0

ME(p, �) − ME(p, 0) for 1 � � � ms .
(A.9)

From the moment problem, we know that the moments of a non-negative measure, on the
entire real axis, must satisfy the HH constraints∫ +∞

−∞
dx

( I∑
i=0

Cix
i

)2

�(x) � 0 (A.10)

for arbitrary Ci’s (not all zero), and 0 � I < ∞. The zero equality is only possible for
configurations made up of a finite number of Dirac distributions.

The HH integral constraints can be transformed into the quadratic form expression

I∑
i1,i2=0

Ci1µ(i1 + i2)Ci2 > 0. (A.11)

These inequalities do not guarantee uniqueness for � (i.e. that the physical solution is
the only one with these moments); however, because we are implicitly working with the
moments of a physical system, for which there is uniqueness, the nature of the M̂E(p, �) matrix
coefficients should guarantee uniqueness as well, within the moments’ representation, i.e.
satisfaction of the Carlemann conditions, etc (for further details see Bender and Orszag 1978).

One can then substitute the moment–missing moment relation

ms∑
�=0

( I∑
i1,i2=0

Ci1M̂E(i1 + i2, �)Ci2

)
µ̂(�) > 0 (A.12)
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which generates an uncountable number of linear inequalities (i.e. one linear inequality for
each C-tuple) in the (unconstrained) missing moment variable space:

ms∑
�=1

A�[C]µ(�) < B[C] (A.13)

where

A�[C] ≡ −
I∑

i1,i2=0

Ci1M̂E(i1 + i2, �)Ci2 (A.14)

and

B[C] ≡
I∑

i1,i2=0

Ci1M̂E(i1 + i2, 0)Ci2 . (A.15)

We recall that the missing moments are restricted to
∑ms

�=0 µ(�) = 1.
Let U (I )

E denote the (convex) solution set to the above set of HH inequalities, for given E

and I . The objective is to determine the feasible energy interval, to order I , for which convex
solution sets exists:

E ∈ (E
(I)
L , E(I)

+ ) if U (I )
E �= �. (A.16)

This can be done through a linear programming based cutting method that finds the optimal C’s
leading to a quick assessment on the existence or nonexistence of U (I )

E (Handy et al (1988a, b)).
The preceding formalism is appropriate if the Schrödinger equation potential is not

symmetric. In the present case, since the potential is symmetric, we can define a more efficient
representation by working in terms of a Stieltjes moment formulation. This is done in the
following section.

A. 2. Stieltjes moment formulation

The parity invariant nature of the sextic anharmonic oscillator requires that the ground state
be symmetric, �(−x) = �(x). This in turn introduces more moment constraints.

For symmetric configurations, the odd order Hamburger moments are zero, µ(odd) = 0.
The even order Hamburger moments can be regarded as the moments of a Stieltjes measure
restricted to the non-negative real axis (through a change of variables, y = x2)

u(ρ) ≡ µ(2ρ) (A.17)

where

u(ρ) =
∫ ∞

0
dy yρ=(y) (A.18)

and

=(y) = �(
√

y)√
y

. (A.19)

The Stieltjes moments also satisfy a ME (ε = 1):

gu(ρ + 3) = −mu(ρ + 1) + Eu(ρ) + 2ρ(2ρ − 1) u(ρ − 1) (A.20)

ρ � 0.
The order of this finite difference ME is 1 + ms = 3, leading to the representation

u(ρ) =
ms∑
�=0

M̂E(ρ, �)û(�) (A.21)

where the û(�) are defined as before, and satisfy the constraint,
∑ms

�=0 u(�) = 1.
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One important aspect of working with Stieltjes moments is that because the underlying
function must be positive, all the Stieltjes moments must also be positive (which is not the case
for the Hamburger moments). Thus, for the adopted normalization condition, we have

0 < u(�) < 1 (A.22)

for 0 � � � ms(=2).
Since one is working on the non-negative real axis, y � 0, more HH constraints

are possible. The constraints in equation (A.11), arising from the integral expression in
equation (A.10), define the necessary and sufficient conditions for the moments to correspond
to a non-negative measure on the entire real axis. If we pretend that =(y) exists on the entire
real axis, but we want it to be zero on the negative real axis, then one must also introduce the
counterpart to equation (A.10) for the configuration y=(y):∫

dy yσ

( I∑
i=0

Ciy
i

)2

=(y) > 0 (A.23)

for σ = 0, 1, and I < ∞. Thus, the only way both =(y) and y=(y) can be non-negative
on the entire y-axis is for =(y) = 0, for y < 0. This is an intuitive way of motivating the
HH–Stieltjes moment conditions for a non-negative measure defined on the non-negative real
axis. Consequently, in terms of a quadratic form expression, we have

I∑
i1,i2=0

Ci1u(σ + i1 + i2)Ci2 > 0 (A.24)

for σ = 0, 1 and I � 0.
Repeating the same analysis presented earlier (i.e. substituting the moment–missing

moment relations, and implementing the linear programming based cutting procedure) allows
us to generate very tight bounds for the ground state energy. In particular, for ε = m = g = 1,
one obtains

1.435 624 619 0092 < E < 1.435 624 619 0178 (A.25)

for I = 15.

Appendix B. Defining quantizable EMM-moment equations

We now focus on issues of relevance to the application of EMM to the quantum lens problem.
Consider the configuration F(x) = x2�(x). Its Stieltjes moments (for symmetric solutions)
will satisfy the ME derived from equation (A.20):

gw(ρ + 2) = −mw(ρ) + Ew(ρ − 1) + 2ρ(2ρ − 1)w(ρ − 2) (B.1)

ρ � 2, where w(ρ) ≡ u(ρ + 1). This corresponds to an effective 1 + ms = 4 order relation
since the missing moments {w(0), w(1), w(2), w(3)} must be specified before all the other
moments can be generated.

However, application of EMM, to the above ME, will not generate any discrete state energy
bounds. The principal reason for this is that the same ME ensues if we multiply both sides of
(the modified Schrödinger equation)(− ∂2

x + mx2 + gx6 − E
)
�(x) = D(x) (B.2)

by xp+4, p � 0, provided D(x) is a (symmetric) distribution which is projected out when
multiplied by x4. Thus, we can have D(x) = Aδ(x) + Bδ′′(x), where A and B are arbitrary.
It is reasonable to expect that equation (B.2) admits many bounded, positive, solutions, for
arbitrary E; thereby explaining the lack of any EMM generated bounds for the w moments.
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In general, when generating a ME, we are free to multiply both sides of the the Schrödinger
equation by expressions of the form xpT (x) (where p � 0) so long as all the zeros of T are
zeros of the desired physical solution (i.e. if T (xz) = 0, then �(xz) = 0). If this is not satisfied,
then the resulting ME relation will fail to distinguish between the true Schrödinger equation,
and that modified by additional distribution terms supported at zeros of T .

In accordance with the above, whereas T (x) = x4 generates a ME that yields no discrete
states, the function T (x) = 1+x2 does generate the ground state solution. Applying x2ρ(1+x2)

to both sides of equation (A.1), we obtain the Stieltjes ME

gu(ρ + 4) = −gu(ρ + 3) − mu(ρ + 2) + (E − m)u(ρ + 1)

+[E + 2(ρ + 1)(2ρ + 1)]u(ρ) + 2ρ(2ρ − 1)u(ρ − 1). (B.3)

This is a 1 + ms = 4 order relation. Application of EMM generates the ground state energy
(although at a slower convergence rate): 1.435 6178 < Egr < 1.435 6185, utilizing Stieltjes
moments {u(� 30)}.

A more instructive example is that of the first excited state for the sextic anharmonic
oscillator. The wavefunction will be of the form �exc(x) = xϒ1(x), where ϒ1(x) > 0, and
ϒ1(−x) = ϒ1(x), for x ∈ Re x . We can transform the Schrödinger equation into an equation
for ϒ1(x):

−ε

(
2

x
ϒ ′

1(x) + ϒ ′′
1 (x)

)
+ [mx2 + gx6]ϒ1(x) = Eϒ1(x). (B.4)

Integrating both sides with respect to x2ρ will yield the corresponding Stieltjes ME; however,
it will involve (for ρ = 0) the non-(ϒ1) moment expression

∫ +∞
−∞ dx ϒ ′

1(x)

x
, which is finite.

Although a corresponding EMM analysis can be implemented, it will require a modification
of the conventional EMM formalism, as previously defined.

An alternate approach is to simply take T (x) ≡ x, and work with the configuration
C(x) ≡ x�(x) = x2ϒ1(x). The Stieltjes-C moments are w(ρ) ≡ ∫ +∞

−∞ dx x2ρC(x), for
ρ � 0. In terms of the Hamburger moments, these become w(ρ) = µ(2ρ + 1). If we return
to the Hamburger ME relation in equation (A.3), and take p = 2ρ + 1, we obtain the desired
w-Stieltjes equation:

−ε2ρ(2ρ + 1)w(ρ − 1) + mw(ρ + 1) + gw(ρ + 3) = Ew(ρ) (B.5)

ρ � 0. For the case ε = m = g = 1, working with the first 30 Stieltjes moments, we obtain
the bound

5.033 395 937 697 < E1 < 5.033 395 937 709. (B.6)

For the ground state wavefunction, the function T (x) cannot be zero except where �gr(x)

is zero. For problems defined on a compact domain, this means that T can be zero only at the
boundary, where the ground state wavefunction will, generally, be zero. We discuss this in the
following section.

Appendix C. A Hausdorff moment problem: the infinite square well

We now consider the infinite square well problem

−∂2
x�(x) = E�(x) (C.1)

where �(±L) = 0. The Hamburger moments are µ(p) = ∫ +L
−L

dx xp�(x). For symmetric

configurations, we have µ(2ρ) ≡ u(ρ) = ∫ L2

0 dy yρ=(y), where y ≡ x2 and =(y) ≡ �(
√

y)√
y

.
In terms of these Hausdorff moments, the corresponding ME becomes

−2ρ(2ρ − 1)u(ρ − 1) − 2L2ρ� ′(L) = E u(ρ) (C.2)

ρ � 0. It involves the boundary terms at ±L.
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Relative to the Stieltjes problem, the Hausdorff moment problem introduces more
constraints to the previous Stieltjes (HH) inequalities. We can, intuitively, derive these by
assuming that =(y) is non-negative on [0,∞). This is what the Stieltjes (HH) constraints in
equation (A.23) guarantee (i.e. if we pretend that the Hausdorff moments are actually Stieltjes
moments).

In order to further constrain such a function so that it is zero on the interval [L2,∞), we
must require that (L2 − y)=(y) be non-negative on [0,∞):∫

dy (L2 − y)

( I∑
i=0

Ciy
i

)2

=(y) > 0 (C.3)

I < ∞. That is:
I∑

i1,i2=0

Ci1

(
L2u(i1 + i2) − u(1 + i1 + i2)

)
Ci2 > 0. (C.4)

This is the third set of HH constraints that must be added to those in equation (A.23), for the
Hausdorff problem.

We can summarize all the Hausdorff–HH relations by
I∑

i1,i2=0

C
(σ)
i1

(
D(1)

σ u(i1 + i2) + D(2)
σ u(1 + i1 + i2)

)
C

(σ)
i2

> 0 (C.5)

for σ = 0, 1, 2, where

D(1)
σ =




1 σ = 0

0 σ = 1
L2 σ = 2

(C.6)

and

D(2)
σ =




0 σ = 0

1 σ = 1

−1 σ = 2

(C.7)

for all nontrivial C(σ)’s, and I � 0.
We outline how the above constraints lead to the quantization of the ground state.
Let L = 1, and A ≡ 2� ′(L). Then u(0) = −A

E
> 0, and all the remaining moments

can be generated, once A is normalized. The first three Hausdorff–HH conditions (I = 0)
become:

Hausdorff–HH relations (I = 0) →




u(0) > 0

u(1) > 0

u(0) − u(1) > 0.

(C.8)

Combining Eu(1) = −2u(0) − A, and u(1) > 0, yields −2 u(0)
E

+ u(0) > 0, or 2
E

< 1. The
third inequality, u(1)

u(0) < 1, yields − 2
E

+ 1 < 1, or E > 0; hence the lower bound

2 < E. (C.9)

Having established the positivity of E, we are free to impose the normalization A = −1, hence
u(0) = 1

E
. Thus, the ME relation effectively becomes a zero missing moment problem, with

ms = 0. We can proceed with a numerical determination of the ground state energy.
For problems corresponding to ms = 0, we do not have to implement the linear

programming based, EMM, formulation. Instead, we can work with the nonlinear HH
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inequalities (which are the relations usually cited in the literature) corresponding to the
quadratic form relations given previously. That is, the Hausdorff–HH linear (in the moments)
constraints, are equivalent to the nonlinear (in the moments) determinantal relations:

Det
(
E(I)

σ

)
> 0 (C.10)

where the various HH matrices are

E
(I)

σ ;i1,i2 = D(1)
σ u(i1 + i2) + D(2)

σ u(1 + i1 + i2) (C.11)

for σ = 0, 1, 2, and 0 � i1, i2 � I .
The numerical evaluation of these inequalities yields the bounds

2.467 401 0541 < E < 2.467 401 1008 (C.12)

utilizing all the HH determinants corresponding to the first seven moments: {u(� 6)}. This
compares exceptionally well (up to seven decimal places) with the true answer, E = ( π

2 )
2.

C.1. Moment equations with no boundary terms

In practice, particularly for multi-dimensional applications, we prefer to work with MEs that do
not involve any boundary terms. For the infinite square well case, we can do so by multiplying
both sides of the corresponding Schrödinger equation by xpT (x), where T (±1) = 0. The
ensuing ME will not involve any boundary terms because the kinetic energy term becomes∫ +1

−1
dx G(x)� ′′(x) = G� ′|+1

−1 − G′�|+1
−1 +

∫ +1

−1
dx G′′(x)�(x) (C.13)

where G(x) ≡ xpT (x). Since both G and � are zero at the boundary, no boundary terms will
contribute to the ensuing ME relation.

As an example, let T (x) = 1 − x2, for the L = 1 case. Applying x2ρ(1 − x2) to both
sides of the infinite square well problem yields the Hausdorff ME

Eu(ρ + 1) = [E − (2ρ + 2)(2ρ + 1)]u(ρ) + 2ρ(2ρ − 1)u(ρ − 1) (C.14)

for ρ � 0. Application of EMM duplicates the bounds previously cited.
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